Percepción y emulación de sentidos
Un tacto básico en robots industriales y de servicio
Un tacto más avanzado. Manos robóticas.
Pero si ahora pensamos en aplicaciones más avanzadas, si nos concentramos, por ejemplo, en robots sociales, humanoides o no, podemos desear un sentido del tacto más avanzado. Y nos gustaría, por ejemplo, dotar a los robots de unas 'manos' que se asemejasen algo más a las humanas, no sólo en su habilidad manipuladora sino también en sus capacidades táctiles.
En el libro 'Cognitive robotics' editado por Angelo Cangelosi y Minoru Asada, me encuentro una breve descripción de algunas de las líneas de trabajo en este tacto avanzado.
Sensor GelSight |
- Sensores multicontacto ('multitouch sensors'): es en el fondo, el caso de los sensores de presión que veíamos antes, sensores que detectan una fuerza a lo largo de un eje, típicamente perpendicular a la superficie de contacto.
- Sensores de tres ejes ('three-axis sensors'): detectan fuerzas tanto de presión como tangentes pero de un solo contacto
- Sensores de tres ejes multicontacto; que detectan fuerzas de presión y tangentes pero multi-contacto. De este último tipo, el libro nos menciona la existencia de tres realizaciones: uSkin (mide la deformación de la superficie de silicona monitorizando cambios en los campos magnéticos de imanes ligados a esa silicona), Finger Vision (que usa una cámara para medir deformaciones en marcadores fijados a la superficie y que también actúa como sensor de proximidad puesto que usa silicona trasparente) y GelSight (que recubre la superficie de silicona de GelSight con polvo de aluminio que sirve para realzar la deformación de la superficie de silicona).
Sensor Finger Vision |
En la misma fuente, se nos describen también las cuatro áreas principales de trabajo ahora mismo para este sentido del tacto y estas manos robóticas:
- Reconocimiento de objetos: Se trata de reconocer un objeto mediante el tacto, el material de que está hecho y sus propiedades. Suele combinar este tacto artificial con visión artificial y, a nivel de entrenamiento, se trabaja con enfoques tanto de aprendizaje supervisado como no supervisado.
- Agarre: se ha utilizado para intentar lograr un mejor agarre que el conseguido mediante, simplemente, visión artificial. En algunas de las experiencias en esta faceta se ha utilizado aprendizaje por refuerzo.
- Estimación de posición: Se trata de conocer con la mayor exactitud la posición de un objeto que está en 'la mano' del robot. Los métodos tradicionales se suelen basar en visión artificial pero, cuando un objeto está en la mano de un robot, se producen oclusiones que impiden una 'correcta visión'. La combinación, de nuevo, con información táctil, no afectada por las oclusiones, puede ayudar a superar ese problema.
- Manipulación: todavía un área en desarrollo, donde la manipulación de objetos mediante manos de varios dedos aún está dando sus primeros pasos.
Conclusión
Dedo del robot Vizzy, con cuatro sensores de tres ejes |
Aunque algunos de los desarrollos mencionados se encuentra aún en fases preliminares, creo que el tacto robótico tiene un amplio campo de mejora, un campo que, probablemente, pueda incluir el desarrollo de nuevos sensores pero que en este momento, me parece está más en el lado de encontrar algoritmos (casi seguro procedentes del campo del 'machine learning') que sean capaces de procesar y 'entender' adecuadamente la información recibida de esos sensores.
No hay comentarios:
Publicar un comentario